Effect of the Rain on the Composition of the Hot Springs of Yunohanazawa, Hakone.

By Kazuo KURODA.

(Received March 12, 1940.)

In the previous paper,⁽¹⁾ the author reported the seasonal variations of radium, vanadium, chromium and molybdenum contents of the hot springs of Yunohanazawa, Hakone, Kanagawa Prefecture. The author found that it was beyond doubt that there were variations of composition as a result of abundant rain. In the present paper, the author describes the effect of the rain on the composition of the hot springs of Yunohanazawa.

The rainfall, water level, water temperature, pH, total residue, acidity, iron, manganese, sulphate and hydrogen sulphide were measured every day for six weeks. The methods of experiment will be briefly described.

- (a) Total residue. A 100 ml. portion of the mineral water was evaporated to complete dryness, heated to 130°C. and weighed.
- (b) Acidity. Acidity was determined by titration with standard solution of sodium carbonate using phenol red as the indicator.
- (c) Iron. A 10 ml. portion of the mineral water was boiled with few drops of nitric acid and the potassium thiocyanate solution was added. The red colour was compared with that obtained with standard iron solution.
- (d) Manganese. Nitric acid, phosphoric acid and potassium periodate were added to 20 ml. of the mineral water, and boiled for few minutes. The reddish violet colour was compared with that obtained with standard manganese solution.
- (e) Sulphate. Sulphate was determined colorimetrically using barium chloride and potassium chromate.
- (f) Hydrogen sulphide. A measured excess of iodine solution was added to the mineral water and titrated back to the end point with thiosulphate.

The results are collected in Table 1 and Table 2.

The results of the observation show that the hot springs of Yunohanazawa are affected strongly by the rainfall and that the salt content increases as a result of abundant rain. The changes of discharge, total residue, iron and sulphate content are noticed immediately after a rainstorm, whereas pH and acidity show the maximum values some time later. The changes of manganese and hydrogen sulphide is not so marked as that of iron. The Kōbō-yu spring is affected more strongly by the rainfall than the Gongen-yu spring. The maximum value of discharge and the minimum value of water temperature occurred immediately after heavy rains.

⁽¹⁾ This Bulletin, 15 (1940), 65.

Table 1. Effect of the rain on the composition of the Gongen-Yu spring.

Date	Rain- fall	Water- level (cm.)	Tem- perature (°C.)	pH	Total Residue (g./l.)	Fe (g./l.)	Mn (g./l.)	SO ₄ (g./l.)	Acidity (N)	H ₂ S (g./l.)
July 31	0.2	17	48.5(29.0)	2.65		0.0014	0.0011	0.70	0.011	0.141
Aug. 1	14.2	17	48.8(26.1)	2.7		0.0023	0.0009	0.70	0.012	0.125
2	0.9	17.	48.6(23.2)	2.75		0.0011	0.0010	0.71	0.012	0.144
3	8.9	17	49.0(22.0)	2.7		0.0012	0.0009	0.72	0.013	0.158
4	8.0	17	49.0(21.2)	2.75		0.0010	0.0010	0.69	0.013	0.148
5	11.0	17	48.9(20.2)	2.7		0.0010	0.0010	0.72	0.012	0.146
. 6	17.6	17	49.0(22.1)	2.7		0.0015	0.0010	0.72	0.013	0.132
7	2.45	17	49.0(26.0)	2.75		0.0036	0.0011	0.72	0.012	0.128
8	1.35	17	49.0(24.0)	2.75		0.0014	0.0010	0.71	0.012	0.135
9	0.8	17	49.0(24.0)	2.7	-	0.0011	0.0011	0.80	0.013	0.134
10	10.1	17	49.0(23.8)	2.75		0.0014	0.0011	0.80	0.011	0.132
11	6.0	17	49.0(24.0)	2.7		0.0016	0.0011	0.69	0.013	0.139
12	1.4	17	49.2(24.0)	2.75		0.0020	0.0010	0.74	0.012	0 146
13	4.0	17	49.0(24.0)	2.75		0.0021	0.0010	0.78	0.012	0.141
14	9.6	17	49.0(24.0)	2.75	·	0.0009	0.0010	0.76	0.012	0.139
15	2.0	17	49.3(24.0)	2.7		0.0009	0.0010	0.75	0.012	0 138
16	_	17	49.0(22.0)	2.7		0.0006	0.0011	0.75	0.012	0.117
17	_	17	49.0(22.5)	2.75	1.35	0.0012	0.0011	0.76	0.012	0.145
18	74.0	17	49.0(23.0)	2.75	1.32	0.0016	0.0010	0.74	0.013	0.134
19	76.4	17	49.1(19.5)	2.6	_	0.0016	0.0009	0.74	0.013	0.137
20	90.5	26	49.2(19.5)	2.6	1.32	0.0026	0.0009	0.82	0.013	0.141
21	1.5	26	49.6(23.8)	2.6	1.73	0.0099	0.0010	1.12	0.014	0.121
22	0.9	26	50.3(24.8)	2.6	_	0.0097	0.0009	1.14	0.016	0.141
23	_	26	50.5(20.5)	2.6	_	0.0087	0.0009	1.07	0.016	0.142
24	10.0	26	50.8(20.8)	2.55	1.23	0.0078	0.0009	1.07	0.016	0.129
25	4.5	26	50.7(22.0)	2.55	1.31	0.0072	0.0009	1.05	0.016	0.115
26	2.5	26	50.8(20.0)	2.55	_	0.0072	0.0009	1.03	0.017	0.108
27	5.5	27	51.0(21.1)	2.5	1.05	0.0068	0.0010	0.97	0.017	0.117
28	0.8	26	51.0(21.1)	2.5	1.00	0.0059	0.0011	0.89	0.017	0.114
29	6.3	26	51.0(19.2)	2.55	.	0.0054	0.0011	0.84	0.017	0.138
30	_	25	51.3(21.8)	2.6		0.0043	0.0010	0.84	0.017	0.119
31	_	25	51.4(22.0)	2.6		0.0041	0.0010	0.84	0.016	0.121
Sept. 1	_	25	51.6(21.0)	2.6		0.0034	0.0010	0.82	0.017	0.127
2	_	25	51.6(19.0)	2.6		0.0030	0.0010	0.79	0.016	0.107
3	_	24	51.8(19.2)	2.6		0.0018	0.0011	0.74	0.016	0.100
4	_	23	51.7(19.0)	2.6		0.0017	_	0.74	0.016	0.117
5	_	22	51.6(18.0)	2.6		0.0020		0.68	0.016	0.119
6	_	21	51.5(20.5)	2.7	l	0.0012	_	0.68	0.016	0.116
7	_	21	51.6(22.0)	2.7		0.0015	_	0.68	0.016	0.113
8	7.3	20	51.5(21.0)	2.6		0.0015	_	0.88	0.015	0.127
9	_	19	51.6(20.8)	2.6		0.0023		0.94	0.015	0.128

Table 2. Effect of the rain on the composition of the $K\bar{o}b\bar{o}\text{-}Yu$ spring.

Date	Э	Rainfall	Discharge in l./min.	Temperature (°C.)	$p\mathrm{H}$	H ₂ S (g./l.)
July	31	0.2		45.5(29.0)	2.8	0.079
Aug.	1	14.2	14.5	45.8(26.1)	2.7	0.079
	2	0.9	14.3	45.8(23.2)	2.7	0.078
	3	8.9	13.4	45.5(22.0)	2.6	0.080
	4	8.0	13.4	45.5(21.2)	2.75	0.081
	5	11.0	12.0	45.5,20.2)	2.75	0.078
	6	17.6	11.4	45.5(22.1)	2.7	0.082
	7	2.45	9.6	45.7(26.0)	2.65	0.072
	8	1.35	12.0	45.8(24.0)	2.7	0.062
	9	0.8	9.1	45.6(24.0)	2.7	0.058
	10	10.1	10.5	45.5(23.8)	2.7	0.065
	11	6.0	10.9	45.5(24.0)	2.8	0.065
	12	1.4	10.9	45.4(24.0)	2.7	0.074
	13	4.0	9.9	45.0(24.0)	2.7	0.068
	14	9.6	9.5	45.4(24.0)	2.7	0.076
	15	2.0	9.1	45.3(24.0)	2.7	0.063
	16	-	8.4	45.1(22.0)	2.7	0.064
	17		8.0	45.2(22.5)	2.7	0.053
	18	74.0	7.6	45.2(22.5)	2.7	0.079
	19	76.4	20.8	44.2(19.5)	2.7	0.083
	20	90.5	33.4	43.5(19.5)	2.65	0.077
	21	1.5	45.6	43.5(23.8)	2.7	0.079
	22	0.9	47.5	44.8(24.8)	2.7	0.101
	2 3		44.5	45.2(20.5)	2.65	0.104
	24	10.0	42.1	45.5(20.8)	2.6	0.093
	25	4.5	40.0	45.6(22.0)	2.6	0.092
	26	2.5	39.8	46.0(20.0)	2.6	0.091
	27	5.5	38.5	46.0(21.1)	2.6	0.086
	2 8	0.8	37.7	46.0(21.1)	2.6	0.094
	29	6 3	35.4	46.1(19.2)	2.6	0.093
	30	-	31.4	46.3(21.8)	2.6	0.093
	31	_	30.2	46.5(22.0)	2.6	0.090
Sept.	1		29.3	46.9,21.0)	2.7	0.090
-	2		29.0	47.0(19.0)	2.7	0.089
	3	_	28.6	47.0(19.2)	2.7	0.096
	4		27.8	47.0(19.0)	2.7	0.101
	5		28.0	47.0(18.0)	2.7	0.110
	6	_	27.0	47.0(20.5)	2.7	0.099
	7	_	27.8	47.0(22.0)	2.7	0.099
	8	7.3	26.4	47.0(21.0)	2.7	0.098
	9	_	25 .6	47.0(20.8)	2.7	0.106

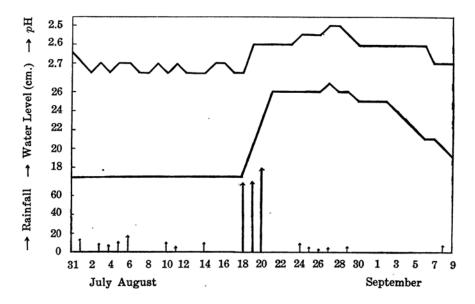


Fig. 1. Effect of the Rain on the Water Level and pH of the Gongen-Yu Spring.

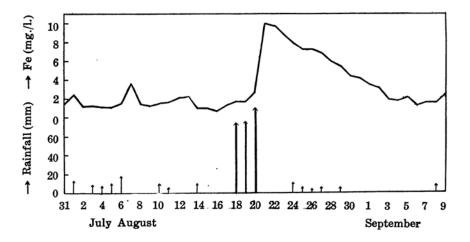


Fig. 2. Effect of the Rain on the Iron Content of the Gongen-Yu Spring.

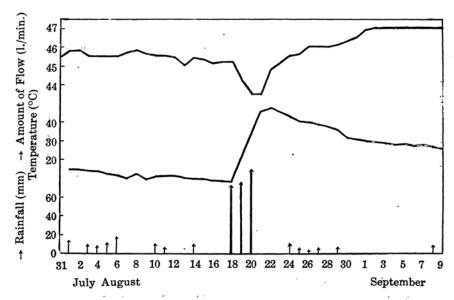


Fig. 3. Effect of the Rain on the Discharge and Temperature of the Kōbō-Yu Spring.

Summary.

The effect of the rain on the composition of the hot springs of Yunohanazawa was studied and it was found that the springs vary in composition according to the amount of rain falling.

The author expresses his hearty thanks to Prof. Kenjiro Kimura for his kind guidance. The expense for the experiments has been defrayed from a grant given to Prof. Kimura by the Japan Society for the Promotion of Scientific Research, to which the author's thanks are due.

Chemical Institute, Faculty of Science, Imperial University of Tokyo.